Computational Aspects of Cellular Automata on Countable Sofic Shifts
نویسندگان
چکیده
We investigate the computational properties of cellular automata on countable (equivalently, zero entropy) sofic shifts with an emphasis on nilpotency, periodicity, and asymptotic behavior. As a tool for proving decidability results, we prove the Starfleet Lemma, which is of independent interest. We present computational results including the decidability of nilpotency and periodicity, the undecidability of stability of the limit set, and the existence of a Π1-complete limit set and a Σ3-complete asymptotic set.
منابع مشابه
Complexity of Conjugacy, Factoring and Embedding for Countable Sofic Shifts of Rank 2
In this article, we study countable sofic shifts of CantorBendixson rank at most 2. We prove that their conjugacy problem is complete for GI, the complexity class of graph isomorphism, and that the existence problems of block maps, factor maps and embeddings are NP-complete.
متن کاملCellular automata between sofic tree shifts
We study the sofic tree shifts of A ∗ , where Σ∗ is a regular rooted tree of finite rank. In particular, we give their characterization in terms of unrestricted Rabin automata. We show that if X ⊂ A ∗ is a sofic tree shift, then the configurations in X whose orbit under the shift action is finite are dense in X , and, as a consequence of this, we deduce that every injective cellular automata τ ...
متن کاملCellular Automata on Regular Rooted Trees
We study cellular automata on regular rooted trees. This includes the characterization of sofic tree shifts in terms of unrestricted Rabin automata and the decidability of the surjectivity problem for cellular automata between sofic tree shifts.
متن کاملOn Derivatives and Subpattern Orders of Countable Subshifts
We study the computational and structural aspects of countable two-dimensional SFTs and other subshifts. Our main focus is on the topological derivatives and subpattern posets of these objects, and our main results are constructions of two-dimensional countable subshifts with interesting properties. We present an SFT whose iterated derivatives are maximally complex from the computational point ...
متن کاملClassification of Sofic Projective Subdynamics of Multidimensional Shifts of Finite Type
Motivated by Hochman’s notion of subdynamics of a Z subshift [8], we define and examine the projective subdynamics of Z shifts of finite type (SFTs) where we restrict not only the action but also the phase space. We show that any Z sofic shift of positive entropy is the projective subdynamics of a Z2 (Z) SFT, and that there is a simple condition characterizing the class of zero-entropy Z sofic ...
متن کامل